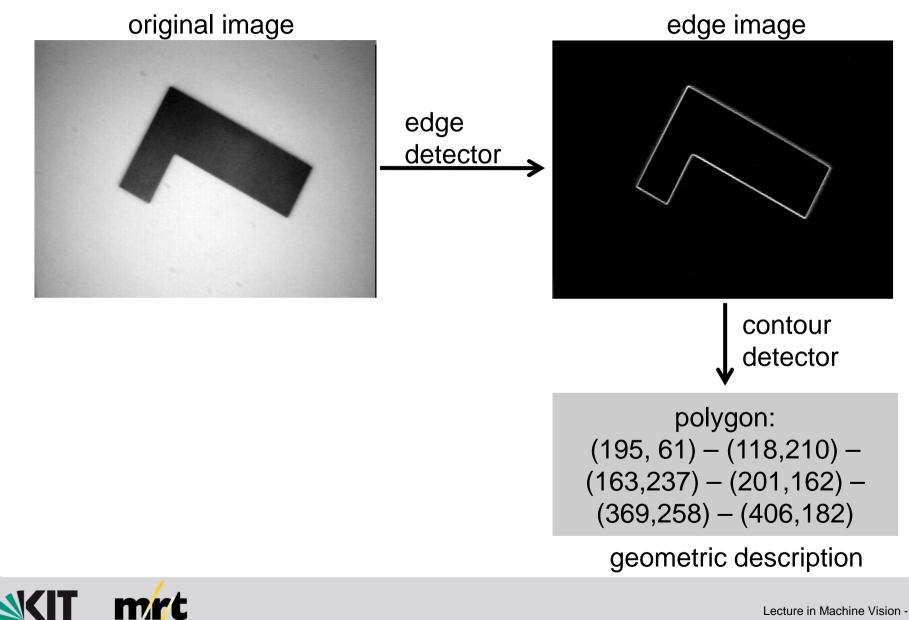


Chapter 4: Curve Fitting

Contours



REPETITION: 2D GEOMETRY

Lecture in Machine Vision - 3

2D Geometry

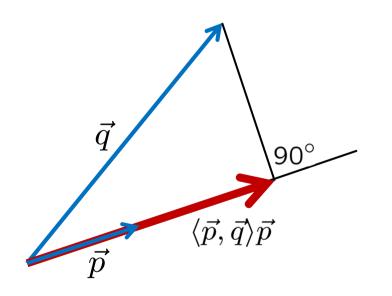
- dot product:
 - definition:

 $\langle \vec{p}, \vec{q} \rangle = p_1 q_1 + p_2 q_2$

- bilinearity:

 $\langle \alpha \vec{p} + \beta \vec{r}, \gamma \vec{q} + \delta \vec{s} \rangle = \alpha \gamma \langle \vec{p}, \vec{q} \rangle + \alpha \delta \langle \vec{p}, \vec{s} \rangle + \beta \gamma \langle \vec{r}, \vec{q} \rangle + \beta \delta \langle \vec{r}, \vec{s} \rangle$

- important property:
 - $\langle \vec{p}, \vec{q} \rangle = ||\vec{p}|| \cdot ||\vec{q}|| \cdot \cos \angle (\vec{p}, \vec{q})$
- follows:
 - $\langle \vec{p}, \vec{p} \rangle = ||\vec{p}||^2$ $\langle \vec{p}, \vec{q} \rangle = 0$ if $\vec{p} \perp \vec{q}$
- -projection on direction $\langle \vec{p}, \vec{q} \rangle \vec{p}$ with $||\vec{p}|| = 1$



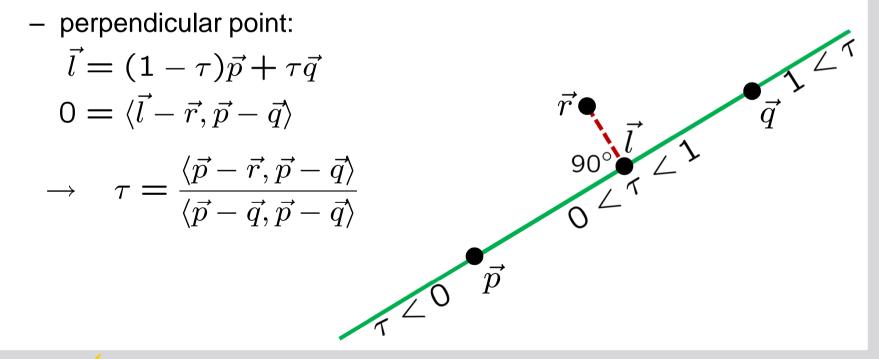
2D Geometry cont.

- lines and line segments
 - line segment with end points \vec{p} and \vec{q} :

$$\vec{x} = (1 - \tau)\vec{p} + \tau\vec{q}, \quad \tau \in [0, 1]$$

- is part of line:

$$\vec{x} = (1 - \tau)\vec{p} + \tau \vec{q}, \quad \tau \in \mathbb{R}$$



2D Geometry cont.

- line in normal form:

\vec{n} orthogonal unit vector, i.e. $||\vec{n}|| = 1, \langle \vec{n}, \vec{q} - \vec{p} \rangle = 0$

$$0 = \langle \vec{n}, \vec{x} \rangle - \langle \vec{n}, \vec{p} \rangle$$

= $\langle \vec{n}, \vec{x} \rangle + c$ (normal form)

- distance of point from line:

 $d = ||\vec{l} - \vec{r}|| = |\langle \vec{n}, \vec{r} \rangle + c|$

- an (arbitrary) point on the line:

 \vec{p}

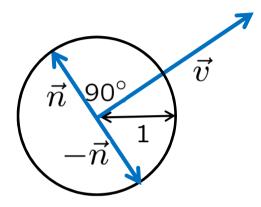
 $-c\vec{n}$

2D Geometry cont.

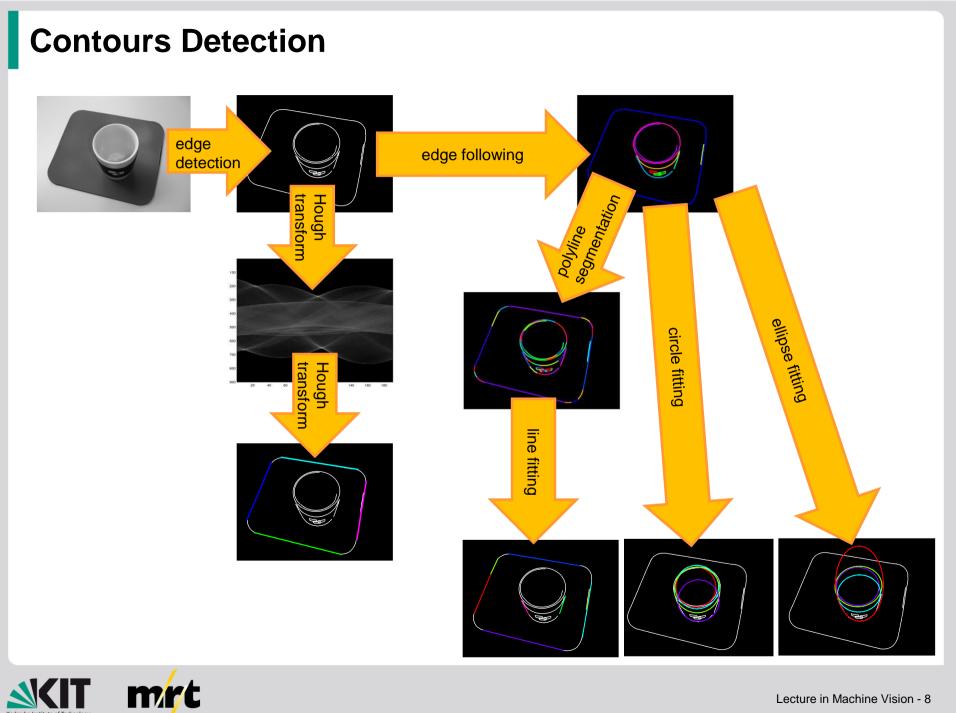
– unit normal vector:

$$\vec{v} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$$
$$\vec{n} = \frac{1}{||\vec{v}||} \begin{pmatrix} -v_2 \\ v_1 \end{pmatrix}$$

$$\rightarrow ||\vec{n}|| = 1, \vec{n} \perp \vec{v}$$

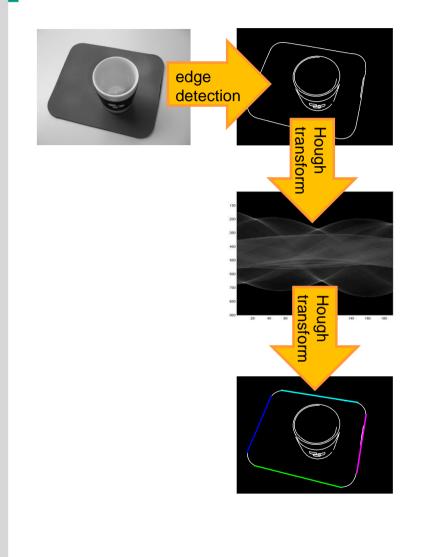


Lecture in Machine Vision - 7



Karlsruhe Institute of Techn

Contours Detection



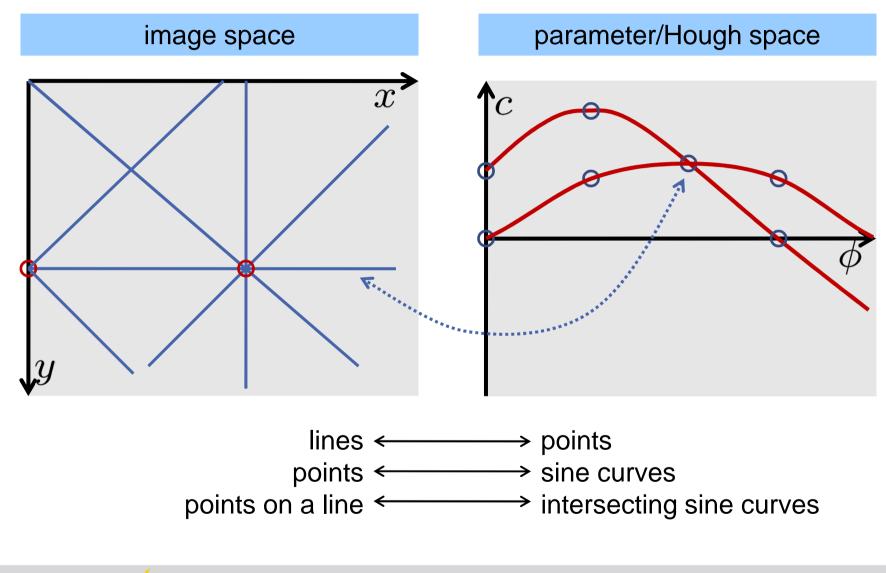
Hough Transform

- find lines in edge bitmaps
 - idea: every line can be represented in 2D as:

```
x \cdot \cos \phi + y \cdot \sin \phi + c = 0
```

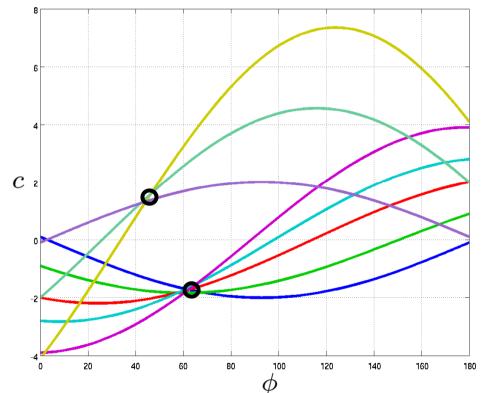
```
with \texttt{O}^\circ \leq \phi < \texttt{180}^\circ and c \in \mathbb{R}
```

```
– 2D-space of all lines represented by (\phi, c)
```

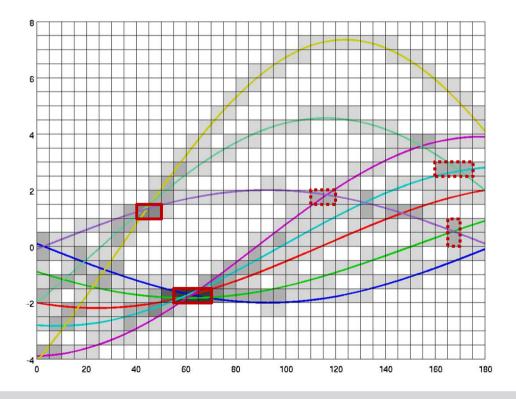



Lecture in Machine Vision - 11

- basic procedure:
 - calculate/draw sine curves in Hough space referring to edge points
 - 2. calculate point of intersection \rightarrow line parameters
- in practice:
 - not unique point of intersection
 - mixture of several lines

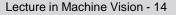


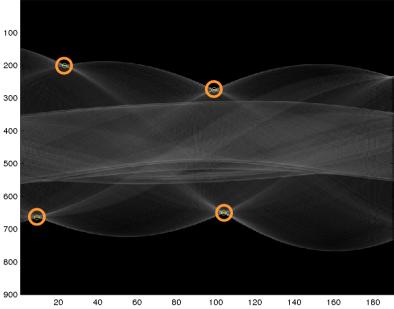
- finding areas of "high density" in Hough space
 - use discrete array of accumulator cells
 - for every cell count the number of sine curves that go through
 - local maxima in accumulator array refer to line parameters

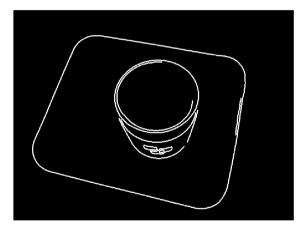


• Hough transform for many edge points on many edges:

- 1. initialize accumulator array of adequate precision with 0
- 2. increment all accumulator cells which satisfy the line equation
- 3. find local maxima in accumulator array \rightarrow parameters of most dominant lines in the image
- the mapping from image space to parameter space is also called *Radon transform*
- after having found line parameters the edge pixels with small distance to the lines can be assigned to the line
 - determine starting point and end point of line
 - allow gaps of maximal size

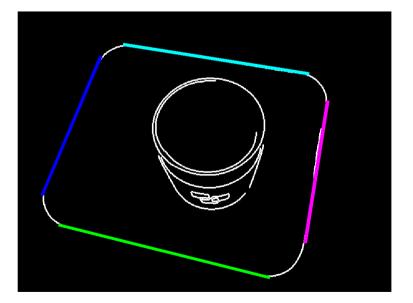






1. edge bitmap (with Canny)

4. Determine lines belonging to local maxima



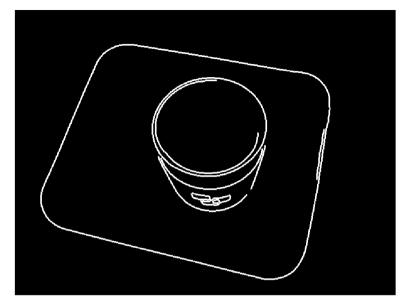
Lecture in Machine Vision - 15

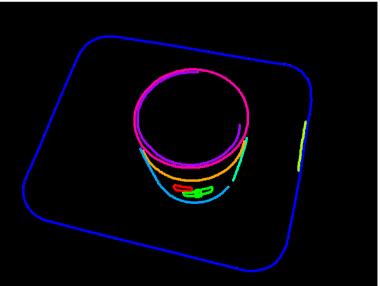
- properties of Hough transform:
 - result depends on size and precision of accumulator array
 - determining significant peaks in the accumulator array might be difficult in practice
 - gradient direction is ignored
 - accumulator array is flooded in "natural" scenes
- extensions:
 - extension to other kind of parameterized curves (circles, ellipses, ...)
 - randomized Hough transform
 - generalized Hough transform

Contours Detection edge edge following detection Polyline segmentation Hough transform Hough transform line fitting

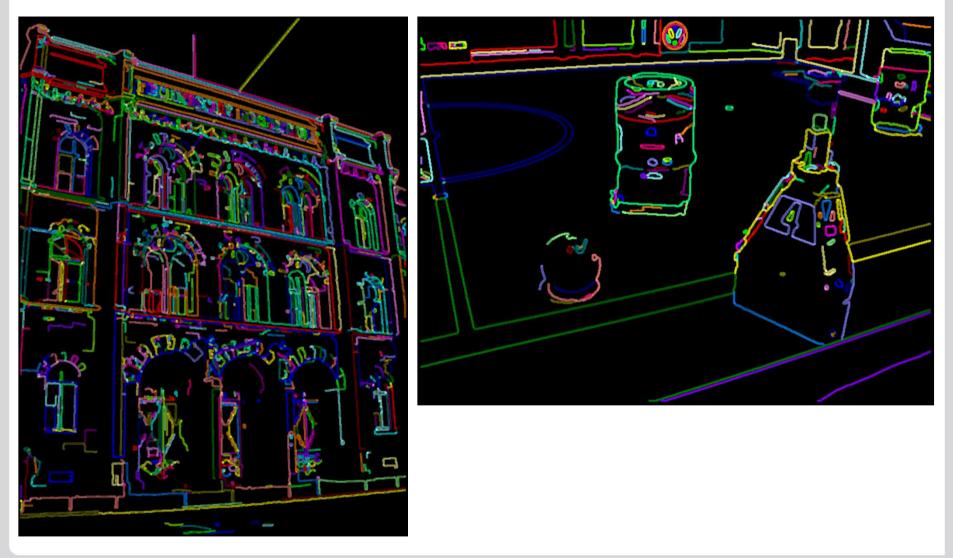
Edge Following

- edge detectors yield bitmaps with edge pixels
- collect all edge pixels and link them in topological order
- use gradient information (if available) for linking
- result: lists of edge pixels that describe a contours



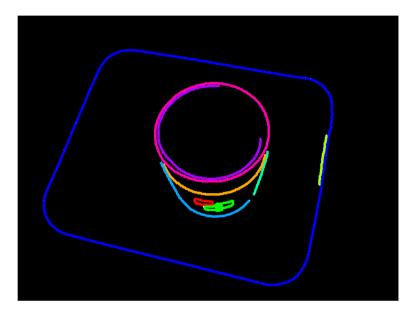


Edge Following cont.



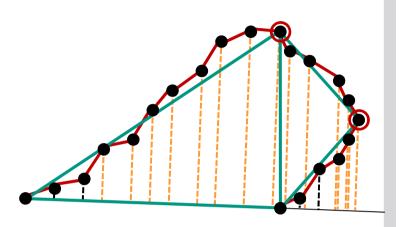
Polyline Segmentation

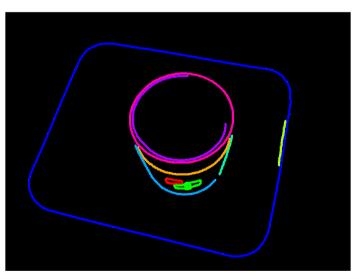
- edge following yields ordered lists of pixels
- these do not automatically represent straight lines
- Task: subdivide pixel lists in such a way that the sublists can be represented by line segments
- Several algorithms. Here, we only consider the Ramer–Douglas– Peucker algorithm

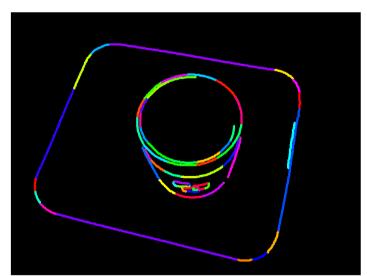


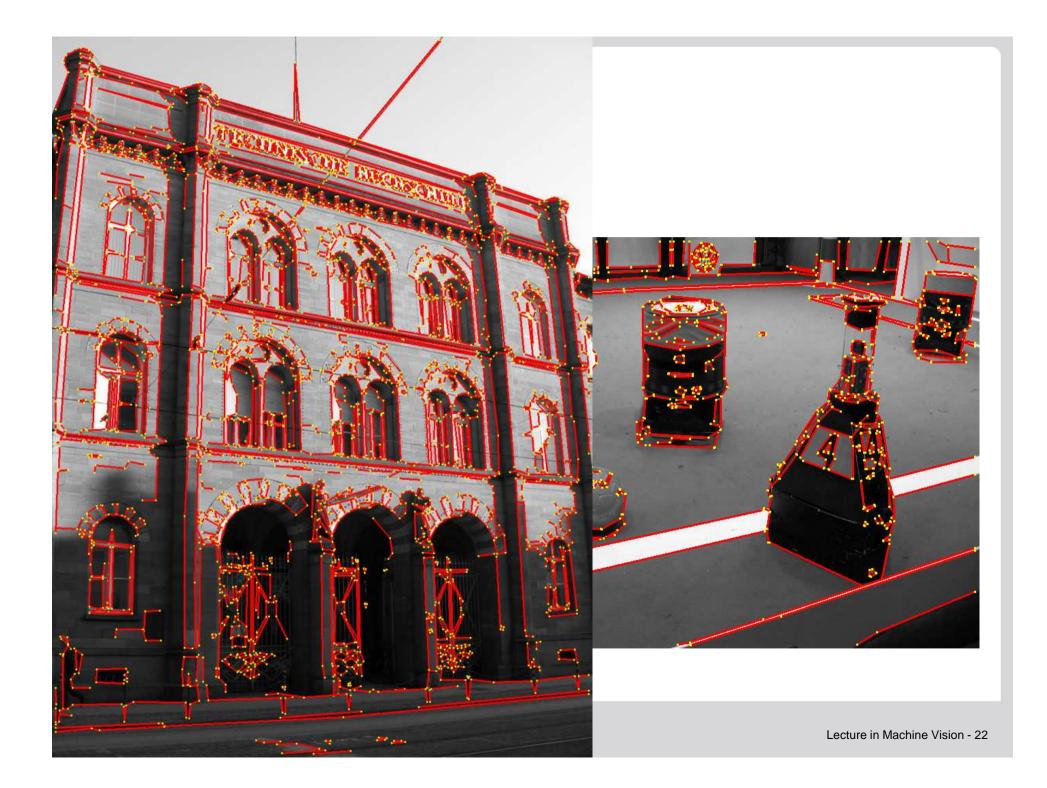
Ramer-Douglas-Peucker Algorithm

- basic idea: subdivide polyline recursively at the farthest vertex
 - 1. generate line from first to last pixel
 - 2. calculate distance of pixels from the line
 - 3. if maximal distance is greater than tolerance, break edge list at farthest vertex and apply the algorithm to the two sublists









Contours Detection edge edge following detection Polyline segmentation Hough transform Hough transform line fitting

LINE FITTING

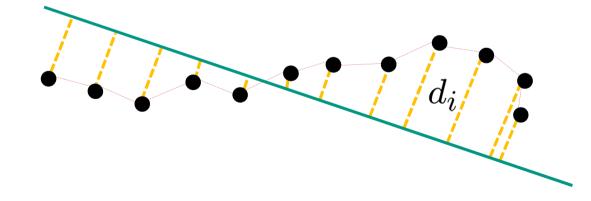
Lecture in Machine Vision - 24

Line Estimation

- result of polygonal chain splitting is suboptimal
- result of Hough transform may be suboptimal
- \rightarrow algorithms for accurate line estimation

Line Estimation cont.

- line parameters: \vec{n}, c
- which parameters are optimal ?
 - -given \vec{n}, c we can determine the distance of a point \vec{x}_i to the line $d_i = |\langle \vec{n}, \vec{x}_i \rangle + c|$
 - search the line parameters that minimize d_1, d_2, \ldots, d_n



Total least squares

• total least squares approach

$$\begin{array}{l} \text{minimise} & \sum_{i=1}^{N} d_{i}^{2} \\ \text{subject to } \langle \vec{n}, \vec{n} \rangle = 1 \end{array}$$

– Langrange function:

mrt

$$egin{aligned} \mathcal{L}(ec{n},c,\lambda) &= \sum\limits_{i=1}^N d_i^2 - \lambda(\langle ec{n},ec{n}
angle - 1) \ &= \sum\limits_{i=1}^N (\langle ec{n},ec{x_i}
angle + c)^2 - \lambda(\langle ec{n},ec{n}
angle - 1) \end{aligned}$$

– zeroing partial derivative w.r.t. c:

$$\frac{\partial \mathcal{L}}{\partial c} = 2 \sum_{i} \langle \vec{n}, \vec{x}_i \rangle + 2Nc \stackrel{!}{=} 0$$
$$\rightarrow c = -\frac{1}{N} \sum_{i} \langle \vec{n}, \vec{x}_i \rangle$$

- zeroing partial derivative w.r.t. n:

$$\begin{aligned} \frac{\partial \mathcal{L}}{\partial n_1} &= 2(\sum_i x_{i,1}^2)n_1 + 2(\sum_i x_{i,1}x_{i,2})n_2 + 2(\sum_i x_{i,1})c - 2\lambda n_1 \stackrel{!}{=} 0\\ \frac{\partial \mathcal{L}}{\partial n_2} &= 2(\sum_i x_{i,1}x_{i,2})n_1 + 2(\sum_i x_{i,2}^2)n_2 + 2(\sum_i x_{i,2})c - 2\lambda n_2 \stackrel{!}{=} 0\\ -\text{substituting } c \text{ by } -\frac{1}{N}\sum_i \langle \vec{n}, \vec{x}_i \rangle :\\ \underbrace{(\sum_i x_{i,1}^2 - \frac{1}{N}(\sum_i x_{i,1})^2)}_{=:\alpha}n_1 + \underbrace{(\sum_i x_{i,1}x_{i,2} - \frac{1}{N}\sum_i x_{i,1}\sum_i x_{i,2})}_{=:\beta}n_2 = \lambda n_1\\ \underbrace{(\sum_i x_{i,1}x_{i,2} - \frac{1}{N}\sum_i x_{i,1}\sum_i x_{i,2})}_{=:\gamma}n_1 + \underbrace{(\sum_i x_{i,2}^2 - \frac{1}{N}(\sum_i x_{i,2})^2)}_{=:\gamma}n_2 = \lambda n_2 \end{aligned}$$

- rewriting as matrix equation:

$$\begin{pmatrix} \alpha & \beta \\ \beta & \gamma \end{pmatrix} \vec{n} = \lambda \vec{n}$$

– hence: λ is Eigenvalue and \vec{n} is Eigenvector of $\begin{pmatrix} \alpha & \beta \\ \beta & \gamma \end{pmatrix}$

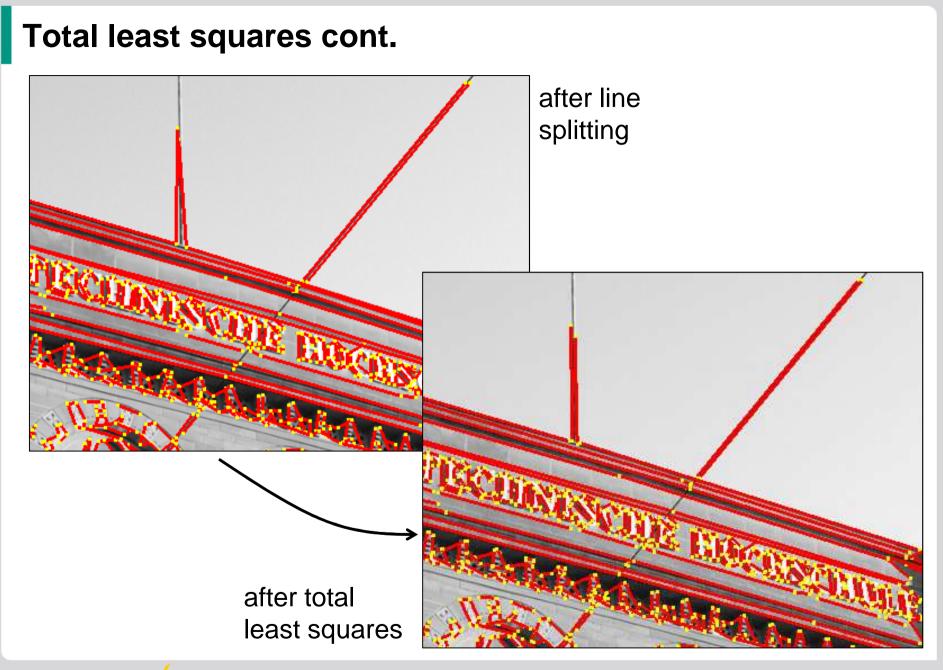
– two solutions of Eigenvalue problem: $\lambda_1 \ge \lambda_2 \ge 0$

- $\rightarrow~\lambda_2~$ minimises distances
- $\rightarrow \lambda_1$ maximises distances

- recipe: line estimation with *total least squares*:
 - 1. calculate from all edge pixels:

$$\sum_{i} x_{i,1}, \sum_{i} x_{i,2}, \sum_{i} x_{i,1}^2, \sum_{i} x_{i,2}^2, \sum_{i} x_{i,1}x_{i,2}$$

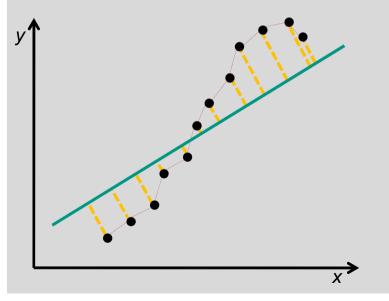
- 2. calculate Eigenvalues and Eigenvectors of matrix $\begin{pmatrix} \alpha & \beta \\ \beta & \gamma \end{pmatrix}$ $\rightarrow \vec{n}, \lambda$ (take the smaller Eigenvalue)
- 3. calculate c from \vec{n}
- 4. if you are interested in line segments, determine start and end point from edge pixels projected on the line



Lecture in Machine Vision - 31

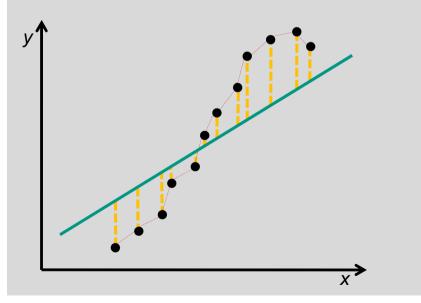
total least squares

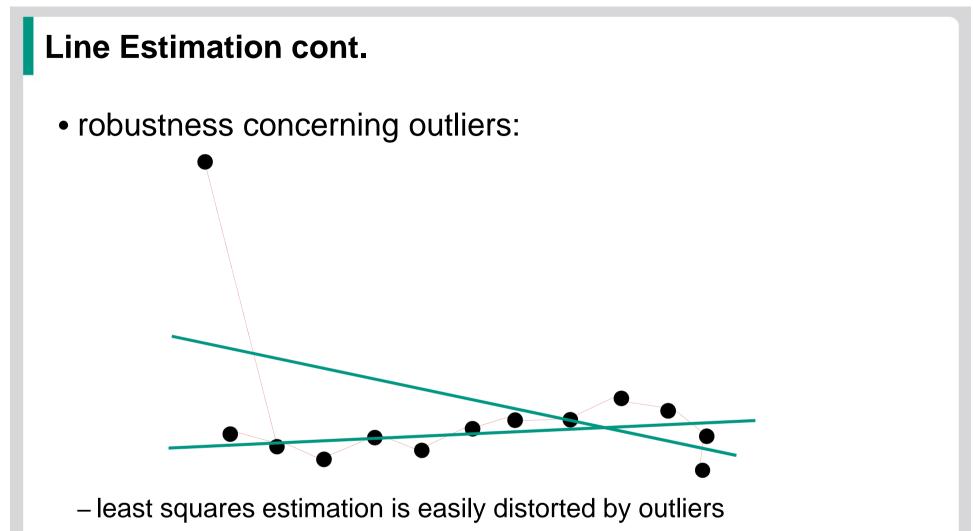
- treat x and y alike
- isotropic
- minimize orthogonal distances



ordinary least squares

- interpret y = y(x)
- anisotropic
- minimize distances in y only





- outliers occur often in machine vision

Line Estimation cont.

- robustness ideas:
 - reduce influence of gross outliers
 - \rightarrow weighted least squares, M-estimators
 - ignore outliers
 - \rightarrow LTS, RANSAC

Weighted Least Squares

- Idea:
 - edge points should have different influence
 - influence of outliers should be small, influence of reliable points large
- Approach:
 - introduce weights $w_i \geq 0$, one for each edge point

Weighted Least Squares cont.

• Solution:

mrt

– using Lagrange multipliers as before yields:

$$\begin{split} c &= -\frac{1}{W} \sum_{i} w_{i} \langle \vec{n}, \vec{x}_{i} \rangle \\ \underbrace{(\sum_{i} w_{i} x_{i,1}^{2} - \frac{1}{W} (\sum_{i} w_{i} x_{i,1})^{2})}_{=:\tilde{\alpha}} n_{1} + \underbrace{(\sum_{i} w_{i} x_{i,1} x_{i,2} - \frac{1}{W} \sum_{i} w_{i} x_{i,1})}_{=:\tilde{\beta}} n_{2} = \lambda n_{1} \\ \underbrace{(\sum_{i} w_{i} x_{i,1} x_{i,2} - \frac{1}{W} \sum_{i} w_{i} x_{i,1})}_{=\tilde{\beta}} n_{1} + \underbrace{(\sum_{i} w_{i} x_{i,2}^{2} - \frac{1}{W} (\sum_{i} w_{i} x_{i,2})^{2})}_{=:\tilde{\gamma}} n_{2} = \lambda n_{2} \\ W &= \sum_{i} w_{i} \\ - \text{yields Eigenvalue problem as before} \\ \begin{pmatrix} \tilde{\alpha} & \tilde{\beta} \\ \tilde{\beta} & \tilde{\gamma} \end{pmatrix} \vec{n} = \lambda \vec{n} \end{split}$$

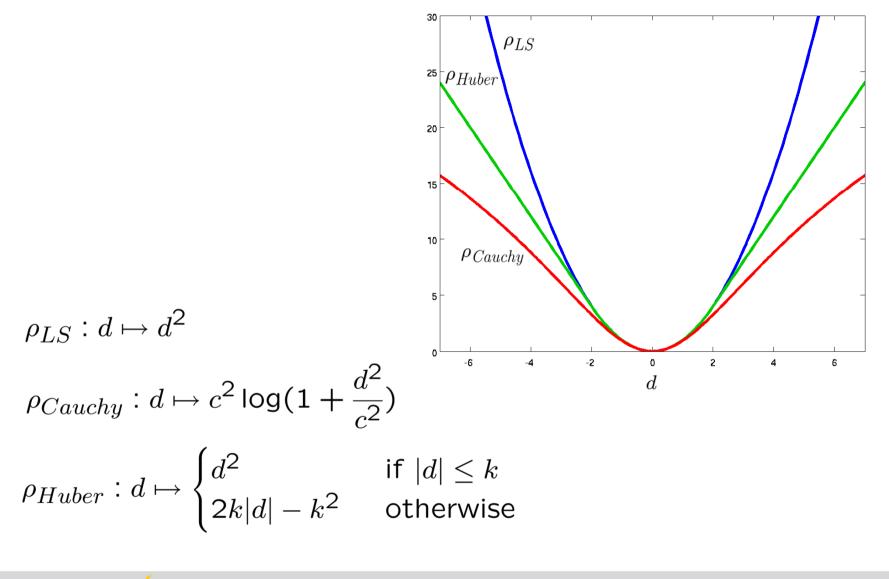
M-estimators

- Choice of w_i ?
- Vanilla least squares:

- distances enter error term as squares

$$\begin{array}{l} \text{minimise} \quad \sum_{i=1}^{N} d_{i}^{2} \\ \text{subject to } \langle \vec{n}, \vec{n} \rangle = 1 \end{array}$$

- idea: replace d_i^2 by a term that grows more slowly



• M-estimators:

 $\begin{array}{l} \text{minimise} & \sum\limits_{i=1}^{N} \rho(d_i) \\ \text{subject to } \langle \vec{n}, \vec{n} \rangle = 1 \end{array}$

with suitable function ho

• Lagrange function:

$$\mathcal{L}_M(\vec{n}, c, \lambda) = \sum_{i=1}^N \rho(d_i) - \lambda(\langle \vec{n}, \vec{n} \rangle - 1)$$

compare with Lagrange function of weighted least squares:

$$\mathcal{L}_W(\vec{n},c,\lambda) = \sum_{i=1}^N w_i d_i^2 - \lambda(\langle \vec{n},\vec{n} \rangle - 1)$$

• Derivatives of Lagrange function:

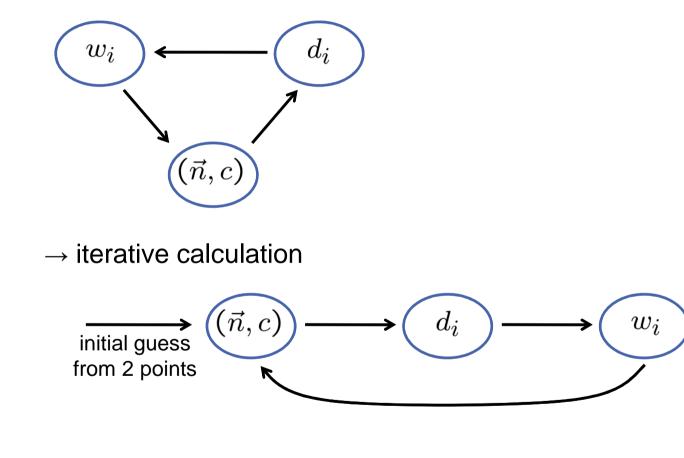
$$\frac{\partial \mathcal{L}_{M}(\vec{n}, c, \lambda)}{\partial c} = \sum_{i=1}^{N} \underbrace{\frac{\partial \rho(d_{i})}{\partial d_{i}}}_{i=1} \underbrace{\frac{\partial d_{i}}{\partial c}}_{i=1} \right\} \text{ equal if } w_{i} = \frac{\frac{\partial \rho(d_{i})}{\partial d_{i}}}{2d_{i}}$$

$$\frac{\partial \mathcal{L}_{W}(\vec{n}, c, \lambda)}{\partial c} = \sum_{i=1}^{N} \underbrace{w_{i} \cdot 2d_{i}}_{i=1} \underbrace{\frac{\partial d_{i}}{\partial c}}_{i=1} \right\} \text{ equal if } w_{i} = \frac{\frac{\partial \rho(d_{i})}{\partial d_{i}}}{2d_{i}}$$

$$\text{ analogous reasoning for } \frac{\partial \mathcal{L}}{\partial \vec{n}}$$

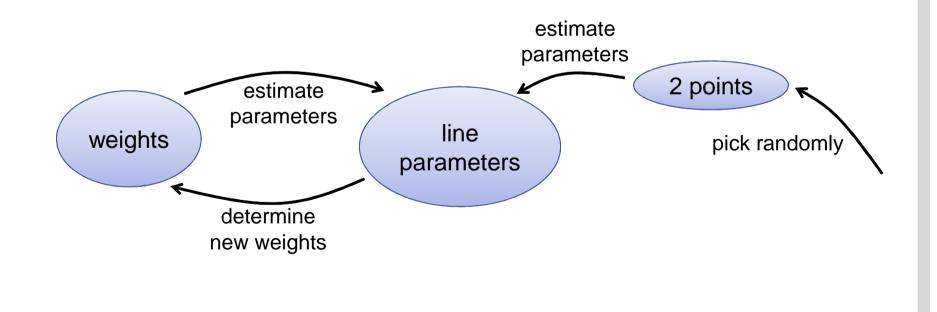
→ running weighted least squares with appropriate weights implements M-estimators → choose weights $w_i = \frac{\frac{\partial \rho(d_i)}{\partial d_i}}{2d_i}$

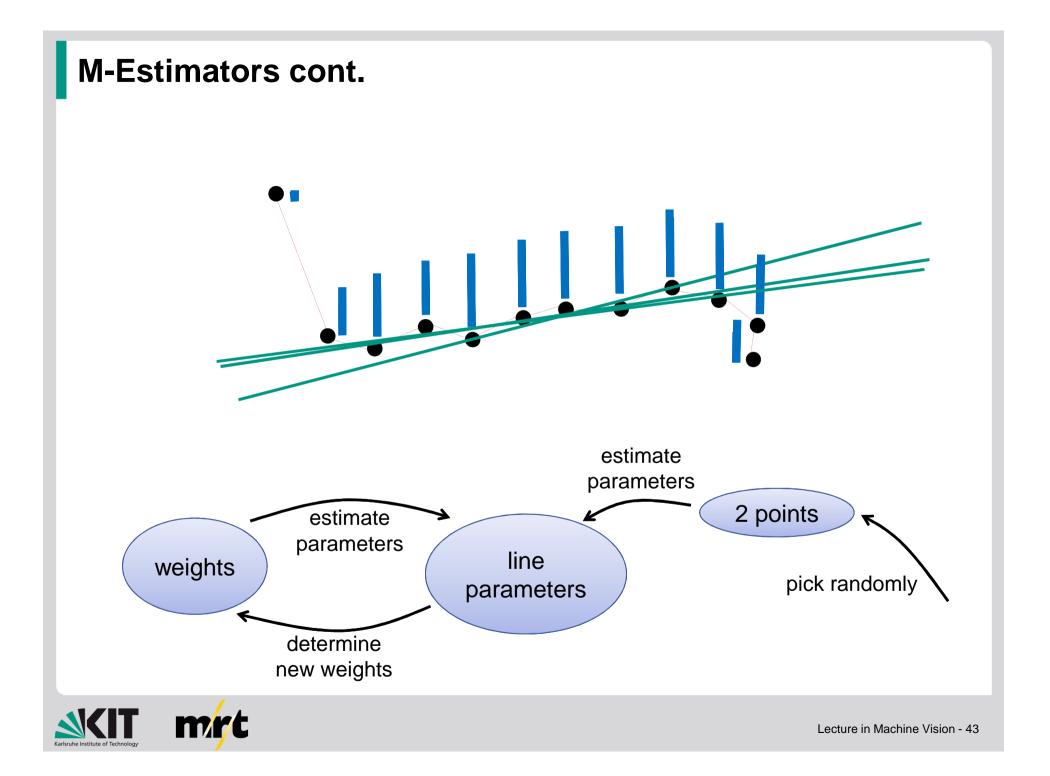
• Recurrent dependency



– iterative algorithm:

- 1. calculate initial guess of line parameters from two (arbitrary) points
- 2. based on the line parameters found, calculate weights
- 3. based on the weights, recalculate the line parameters
- 4. repeat steps 2 and 3 until convergence





LTS

• least sum-of-squares estimator (LS): $\min_{\vec{n},c} \sum_{i=1}^{N} d_i^2$

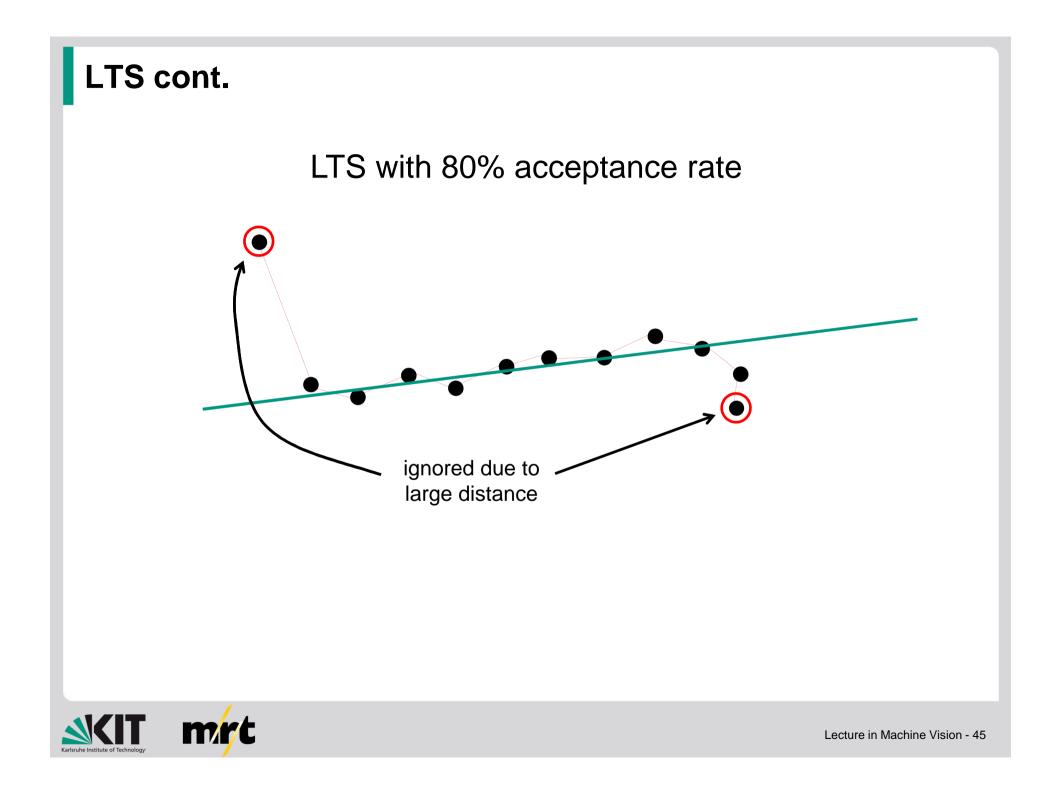
is sensitive to outliers because all points contribute to the sum

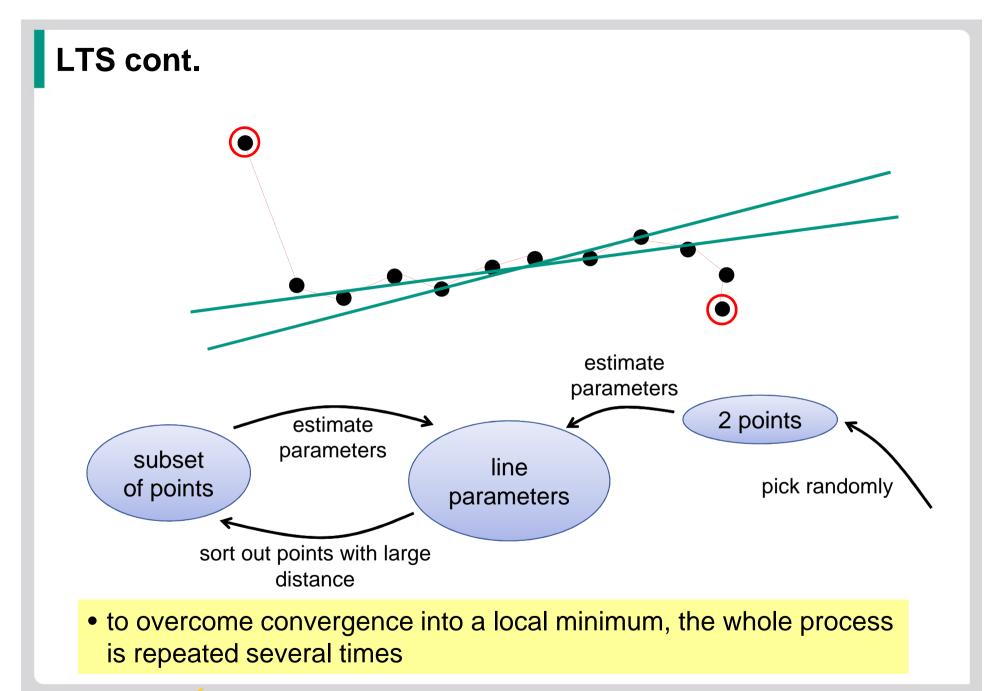
• least trimmed-sum-of-squares estimator (LTS):

$$\underset{\vec{n},c}{\text{minimise}} \sum_{i=1}^{p} d_{i:N}^{2}$$

with p < N and $d_{i:N}$ the i-th element in the ordered list of point-distances p is typically given as a percentage of N, e.g. 80% of N

• LTS is robust since outliers with large distance do not contribute to the sum



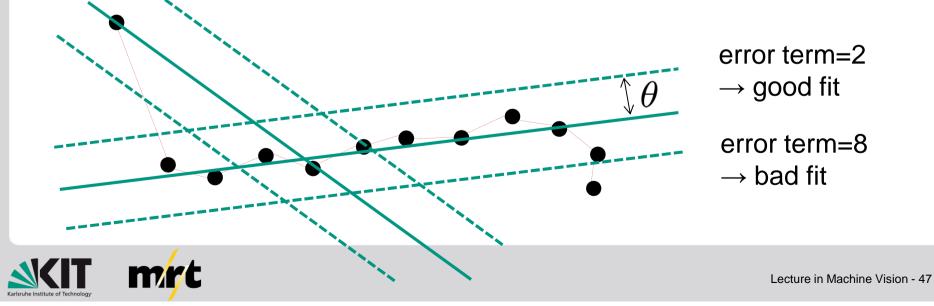


RANSAC

• idea: search a line that passes nearby as many points as possible

$$\begin{array}{l} \underset{\vec{n},c}{\textit{minimise}} \; \sum_{i=1}^{N} \sigma(d_{i}) \\ \\ \text{with } \sigma(d_{i}) = \begin{cases} 0 & \text{ if } |d_{i}| \leq \theta \\ 1 & \text{ if } |d_{i}| > \theta \end{cases} \end{array}$$

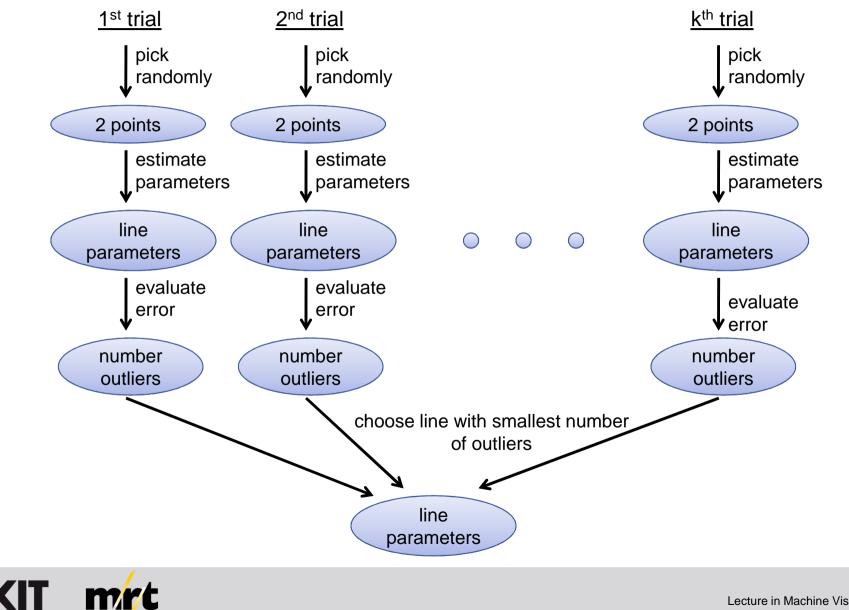
• definition similar to M-estimator, but σ is discontinuous



RANSAC cont.

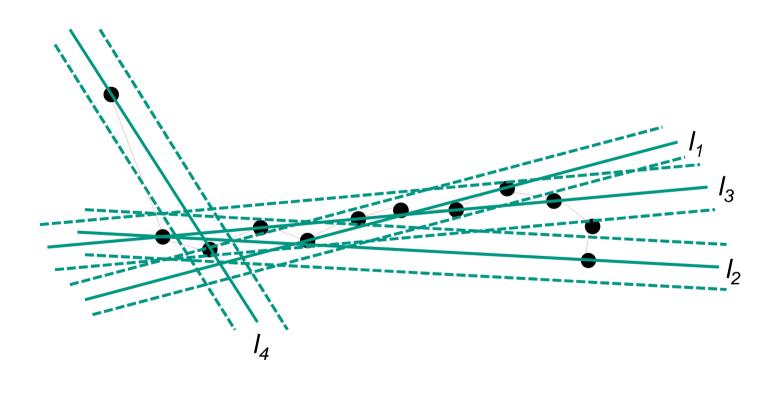
- algorithm:
 - pick randomly two points
 - fit line
 - check the number of points outside the tolerance band (=number of outliers)
 - repeat the process several times with different points
 - select the line with the smallest number of outliers
- RANSAC=<u>ran</u>dom <u>sa</u>mple <u>c</u>onsensus

RANSAC cont.



RANSAC cont.

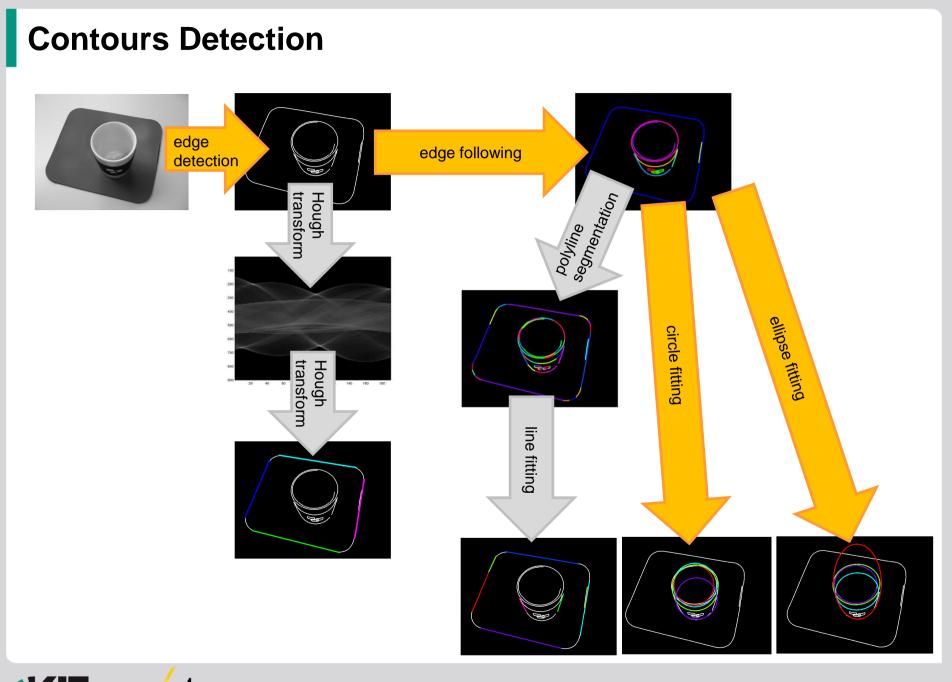
- 1st trial: 6 outliers
- 2nd trial: 7 outliers
- 3rd trial: 3 outliers
- 4th trial: 10 outliers



Robust Estimation

	M-estimator	LTS	RANSAC
• idea	reweight points according to their distance	ignore percentage of points with largest distances	ignore points with distance larger than a threshold
 parameters 	error term, width parameter	acceptance rate	acceptance threshold
 algorithm 	iterated weighted least squares	iterated least squares, several repetitions	repeated guesses from pairs of points

 \rightarrow demo tool

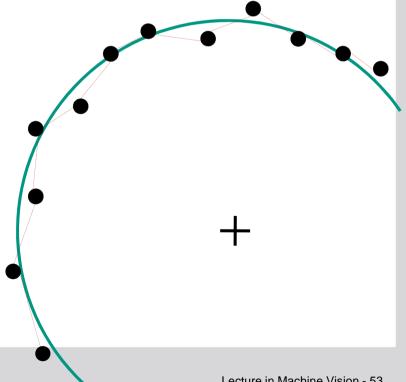


logy mrt

Karlsruhe Institute of Techr

Estimating Circles and Ellipses

 determining parameters of circles/ ellipses that describe a curved contour from points



Estimating Circles

• parametric representation of circles:

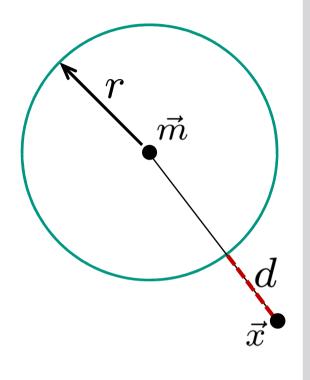
$$(x - m_1)^2 + (y - m_2)^2 - r^2 = 0$$

• Euclidean distance of point (x,y) from the circle:

$$d_E = \left| \sqrt{(x - m_1)^2 + (y - m_2)^2} - r \right|$$

• algebraic distance:

$$d_A = |(x - m_1)^2 + (y - m_2)^2 - r^2$$



- algebraic distance is asymmetric
- for points close to the circle both are similar



- minimizing Euclidean distance:
 - cannot be solved analytically
- minimizing algebraic distance:
 - rewriting algebraic distance

$$(x - m_1)^2 + (y - m_2)^2 - r^2 = (x^2 + y^2) + (m_1^2 + m_2^2 - r^2) + (-2m_1)x + (-2m_2)y$$

= $Ax + By + C + (x^2 + y^2)$

with
$$A = -2m_1, B = -2m_2, C = m_1^2 + m_2^2 - r^2$$

– minimizing

$$\sum_{i=1}^{N} (Ax_i + By_i + C + (x_i^2 + y_i^2))^2$$

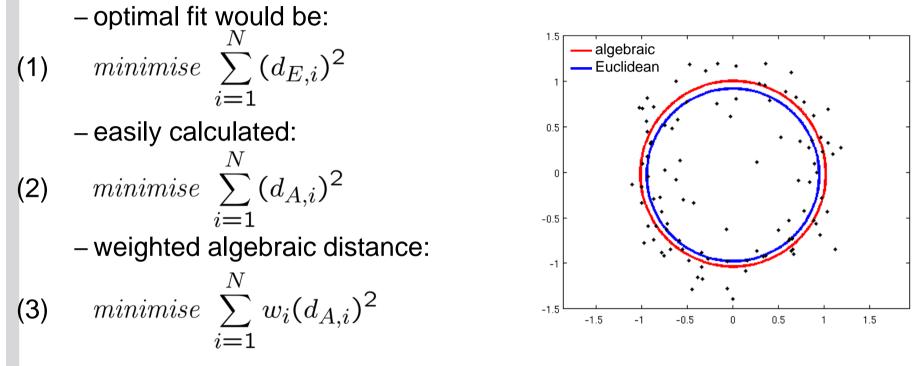
- zeroing partial derivatives yields:

$$\begin{pmatrix} \sum_{i} x_{i}^{2} & \sum_{i} x_{i} y_{i} & \sum_{i} x_{i} \\ \sum_{i} x_{i} y_{i} & \sum_{i} y_{i}^{2} & \sum_{i} y_{i} \\ \sum_{i} x_{i} & \sum_{i} y_{i} & N \end{pmatrix} \begin{pmatrix} A \\ B \\ C \end{pmatrix} = \begin{pmatrix} -\sum_{i} x_{i} (x_{i}^{2} + y_{i}^{2}) \\ -\sum_{i} y_{i} (x_{i}^{2} + y_{i}^{2}) \\ -\sum_{i} (x_{i}^{2} + y_{i}^{2}) \end{pmatrix}$$

– after having found A,B,C we get:

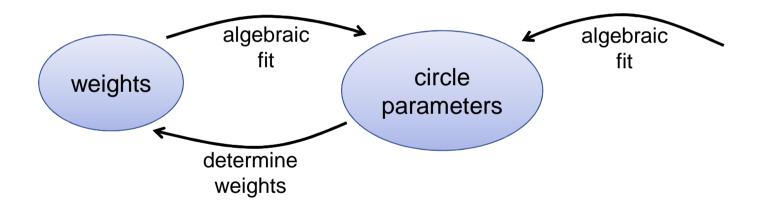
$$m_{1} = -\frac{A}{2}$$
$$m_{2} = -\frac{B}{2}$$
$$r^{2} = m_{1}^{2} + m_{2}^{2} - C$$

minimising the Euclidean distance by iterative reweighting

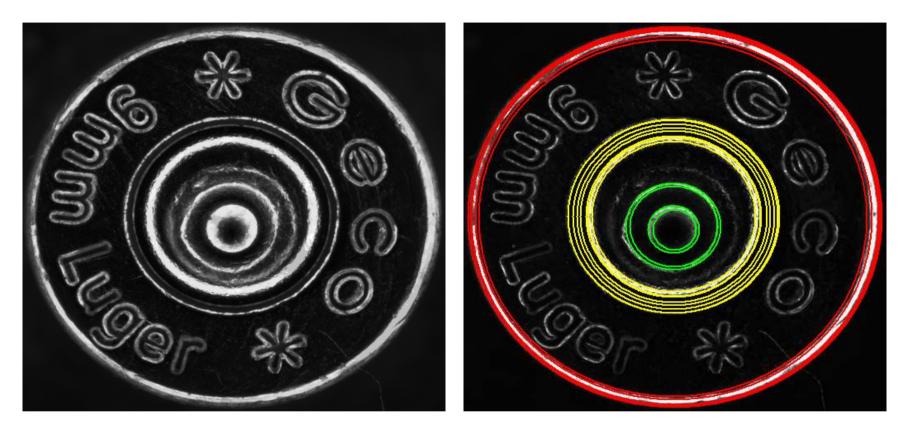


- choose w_i so that (1) and (3) take their minimum at the same values
- incrementally recalculate w_i and circle parameters

- recurrent dependency:
 - circle parameters depend on weights
 - weights depend on circle parameters
 - iterative algorithm:



estimation of circle parameters can be combined with robust techniques like M-estimators, LTS, RANSAC



- example: estimating circles in the images of bullet casings
- techniques: randomized Hough transform + circle fitting with algebraic distance

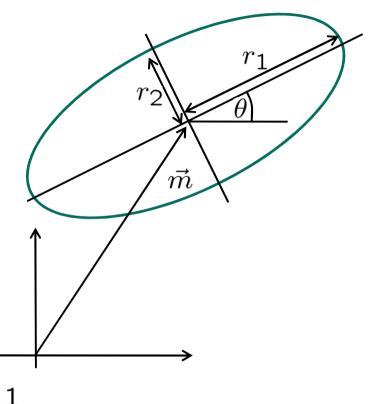
(work of Dr.-Ing. Christoph Speck, MRT)

Estimating Ellipses

- ellipses:
 - extension (radius) r_1, r_2
 - center \vec{m}
 - turning angle $\,\theta$
- parametric representation: $Ax^2 + Hxy + By^2 + Gx + Fy + C = 0$ with $4AB - H^2 > 0$
- eliminating one degree of freedom:

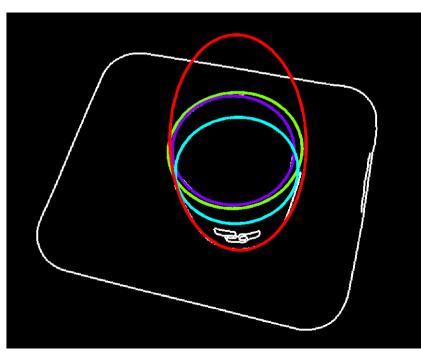
$$-A = 1$$

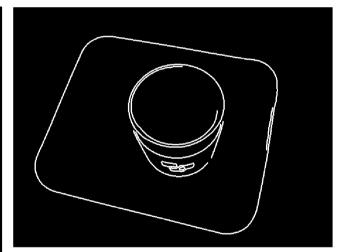
- or $A + B = 1$
- or $A^2 + B^2 + C^2 + F^2 + G^2 + H^2 =$
- or $C = 1$ (not invariant to translation)

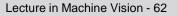


Estimating Ellipses

- approach of Fitzgibbon, Pilu, and Fisher (1999)
 - minimize squared algebraic distance
 - subject to constraint $4AB H^2 = 1$
- yields a generalized Eigenvalue problem.
 Solution provides optimal ellipse parameters.

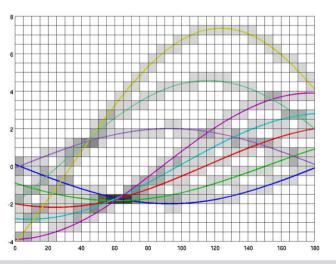


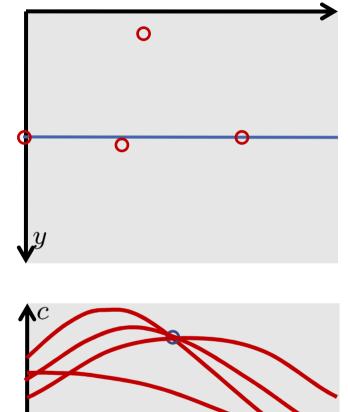




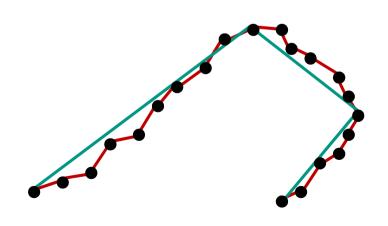
SUMMARY: CURVE FITTING

- Hough transform
 - 2D geometry of lines
 - Hough transform
- polyline segmentation
- robust line estimation
- circle and ellipse fitting

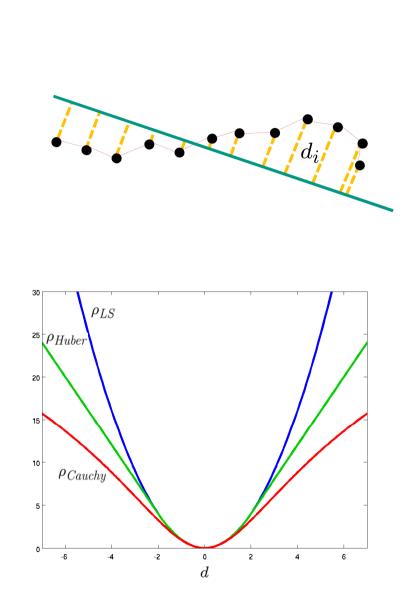




- Hough transform
- polyline segmentation
 - edge following
 - Ramer-Douglas-Peucker alg.
- robust line estimation
- circle and ellipse fitting



- Hough transform
- polyline segmentation
- robust line estimation
 - total least squares
 - weighted least squares
 - M-estimators
 - LTS
 - RANSAC
- circle and ellipse fitting



- Hough transform
- polyline segmentation
- robust line estimation
- circle and ellipse fitting
 - parametric representation
 - algebraic and Euclidean distance
 - iterative estimation

